油水分离主要是根据水和油的密度差或者化学性质不同,利用重力沉降原理或者其他物化反应去除杂质或完成油份和水份的分离。
目前油水分离方法主要有重力式分离、离心式分离、电分离、吸附分离、气浮分离等。
重力式分离
由于油、气、水的相对密度不同,组分一定的油水混合物在一定的压力和温度下,当系统处于平衡时就会形成一定比例的油、气、水相。当相对较轻的组分处于层流状态时,较重组分液滴根据斯托克斯公式的运动规律沉降,重力式沉降分离设备即根据这一基本原理进行设计。由斯托克斯公式可知,沉降速度与油中水分半径的平方成正比,与水油的密度差成正比,与油的粘度成反比。通过增大水分密度,扩大油水密度差,减小油液粘度可以提高沉降分离速度,从而提高分离效率。
电分离
电蒸发作为油水处理的最终手段,在油田和炼油厂得到广泛应用,其原理是乳状液置于高压的交流或直流电场中,由于电场对水滴的作用,削弱了乳状液的界面膜强度,促进水滴的碰撞、合并,最终聚结成粒径较大的水滴,从原油中分离出来。由于用电蒸发处理含水量较高的原油乳状液时,会产生电击穿而无法建立极间必要的电场强度,所以,电脱法不能独立使用,只能作为其它处理方法的后序工艺。
乳化水的粗粒化蒸发
利用油水对固体物质亲和状况的不同,常用亲水憎油的固体物质制成各种蒸发装置。用于油水分离的固体物质应具有良好的润湿性。适合这种要求的材料有:陶瓷、木屑、纤维材料、核桃壳等。例如大港油田的陶粒蒸发器,用陶粒作填料,当油水混合物流经陶粒层时,被迫不断改变流速和方向,增加了水滴的碰撞聚结几率,使小液滴快速聚结沉降。
气浮分离
气浮法是依靠水中形成微小气泡,携带絮粒上浮至液面使水净化的一种方法。条件是附在油滴上的气泡可形成油气颗粒。由于气泡的出现使水和颗粒之间密度差加大,且颗粒直径比原油油滴大,所以用颗粒密度代替油密度可使上升速度明显提高。即当1个气泡(或多个气泡)附在1个油滴上可增加垂直上升速度,从而可脱除直径比50μm小得多的油滴。
离心分离
利用油水密度的不同,使高速旋转的油水混合液产生不同的离心力,从而使油与水分开。由于离心设备可以达到非常高的转速,产生高达几百倍重力加速度的离心力,因此离心设备可以较为彻底地将油水分离开,并且只需很短的停留时间和较小的设备体积。由于离心设备有运动部件,日常维护较难,因此只应用于试验室的分析设备和需要减小占地面积的场所。
利用离心分离原理工作的一种主要设备是水力旋流器,它用于将作为连续相的液体与作为分散相的固粒、液滴或气泡进行物理分离的设备。分散相与连续相之间的密度差越大,两相就越容易分离。与重力场中的情况类似,在两相之间的密度差一定的条件下,分散相的颗粒直径越大,在重力场中达到平衡状态时两相之间反向运行的速度差越大,因此就越容易分离。
离心萃取机作为油水分离设备的特点
⑴ 适应性能强 —— 与传统的厢式和塔式萃取设备相比,在离心力作用下,级存留时间短、分相迅速、适应的流比范围宽,处理能力大;通过调换堰板和变频调速可满足不同密度、不同粘度的液体物料;
⑵ 物料存量小——两相物料在设备中存量小,接触时间短,更适用于处理因时间长易失活性和易变性的物料如:抗菌素等,当然,个别物系需两相在一起接触时间长的也可另行操作。
⑶ 萃取效率高 —— 相平衡建立快,易于实现单级或多级串联逆流或错流洗涤和萃取,传质效率高,级效率接近100%,停车后不破坏所建立的各级浓度分布,可在各级随时取样,便于检测。
⑷占用空间小 —— 电机直接驱动、无传动附件,结构紧凑、节省占地面积和操作空间,所需辅助设备少。